Propagation of non-linear waves is key to the functioning of diverse biological systems. Such waves can organize into spirals, rotating around a core, whose properties determine the overall wave dynamics. Theoretically, manipulation of a spiral wave core should lead to full spatiotemporal control over its dynamics. However, this theory lacks supportive evidence (even at a conceptual level), making it thus a long-standing hypothesis. Here, we propose a new phenomenological concept that involves artificially dragging spiral waves by their cores, to prove the aforementioned hypothesis in silico, with subsequent in vitro validation in optogenetically modified monolayers of rat atrial cardiomyocytes. We thereby connect previously established, but unrelated concepts of spiral wave attraction, anchoring and unpinning to demonstrate that core manipulation, through controlled displacement of heterogeneities in excitable media, allows forced movement of spiral waves along pre-defined trajectories. Consequently, we impose real-time spatiotemporal control over spiral wave dynamics in a biological system.
Door gebruik te blijven maken van deze website, geeft u toestemming voor het plaatsen van cookies. We maken onderscheid tussen functionele cookies en cookies van derden, voor o.a. webstatistieken, filmpjes en social media. De functionele en analytische cookies dienen om inzicht te krijgen in de werking van onze website. Deze worden niet gebruikt om activiteiten van individuele gebruikers te volgen. Cookies van derden verzamelen mogelijk ook gegevens buiten onze website om.