Cited 26 times since 2006 (1.4 per year) source: EuropePMC Clinical chemistry, Volume 52, Issue 8, 8 2 2006, Pages 1501-1509 Identification of apolipoprotein A-II in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling. de Bont JM, den Boer ML, Reddingius RE, Jansen J, Passier M, van Schaik RH, Kros JM, Sillevis Smitt PA, Luider TH, Pieters R

Background

Our aim was to detect differences in protein expression profiles of cerebrospinal fluid (CSF) from pediatric patients with and without brain tumors.

Methods

We used surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry and Q10 ProteinChip arrays to compare protein expression profiles of CSF from 32 pediatric brain tumor patients and 70 pediatric control patients. A protein with high discriminatory power was isolated and identified by subsequent anion-exchange and reversed-phase fractionation, gel electrophoresis, and mass spectrometry. The identity of the protein was confirmed by Western blotting and immunohistochemistry.

Results

Of the 247 detected protein peak clusters, 123 were differentially expressed between brain tumor and control patients with a false discovery rate of 1%. Double-loop classification analysis gave a mean prediction accuracy of 88% in discriminating brain tumor patients from control patients. From the 123 clusters, a highly overexpressed protein peak cluster in CSF from brain tumor patients was selected for further analysis and identified as apolipoprotein A-II. Apolipoprotein A-II expression in CSF was correlated with the CSF albumin concentration, suggesting that the overexpression of apolipoprotein A-II is related to a disrupted blood-brain barrier.

Conclusions

SELDI-TOF mass spectrometry can be successfully used to find differentially expressed proteins in CSF of pediatric brain tumor and control patients. Apolipoprotein A-II is highly overexpressed in CSF of pediatric brain tumor patients, which most likely is related to a disrupted blood-brain barrier. Ongoing studies are aimed at finding subtype specific proteins in larger groups of pediatric brain tumor patients.

Clin Chem. 2006 6;52(8):1501-1509