Cited 8 times since 1990 (0.2 per year) source: EuropePMC Lasers in surgery and medicine, Volume 10, Issue 4, 1 1 1990, Pages 363-374 Early and late arterial healing response to catheter-induced laser, thermal, and mechanical wall damage in the rabbit. Oomen A, van Erven L, Vandenbroucke WV, Verdaasdonk RM, Slager CJ, Thomsen SL, Borst C
Pulsed lasers are being promoted for laser angioplasty because of their capacity to ablate obstructions without producing adjacent thermal tissue injury. The implicit assumption that thermal injury to the artery is to be avoided was tested. Thermal lesions were produced in the iliac arteries and aorta of normal rabbits by a) electrical spark erosion, b) the metal laser probe, and c) continuous wave neodymium-yttrium aluminum garnet (Nd-YAG) laser energy through the sapphire contact probe. High-energy doses were used to induce substantial damage without perforating the vessel wall. Thermal lesions (n = 77) were compared with mechanical lesions (n = 22) induced by oversized balloon dilation. Medial necrosis was induced by all four injury methods. Provided no extravascular contrast was observed after the injury, all damaged segments were patent after 1 to 56 days. The progression of healing with myointimal proliferation was remarkably similar for all injuries. At 56 days, the neointima measured up to 370 microns. In conclusion, provided no perforation with contrast extravasation occurred, the normal rabbit artery recovered well from transmural thermal injury. The wall healing response is largely nonspecific.