Cited 28 times since 2023 (12.9 per year) source: EuropePMC Annals of oncology : official journal of the European Society for Medical Oncology, Volume 34, Issue 9, 16 3 2023, Pages 813-825 Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Helzer KT, Sharifi MN, Sperger JM, Shi Y, Annala M, Bootsma ML, Reese SR, Taylor A, Kaufmann KR, Krause HK, Schehr JL, Sethakorn N, Kosoff D, Kyriakopoulos C, Burkard ME, Rydzewski NR, Yu M, Harari PM, Bassetti M, Blitzer G, Floberg J, Sjöström M, Quigley DA, Dehm SM, Armstrong AJ, Beltran H, McKay RR, Feng FY, O'Regan R, Wisinski KB, Emamekhoo H, Wyatt AW, Lang JM, Zhao SG
Background
The isolation of cell-free DNA (cfDNA) from the bloodstream can be used to detect and analyze somatic alterations in circulating tumor DNA (ctDNA), and multiple cfDNA-targeted sequencing panels are now commercially available for Food and Drug Administration (FDA)-approved biomarker indications to guide treatment. More recently, cfDNA fragmentation patterns have emerged as a tool to infer epigenomic and transcriptomic information. However, most of these analyses used whole-genome sequencing, which is insufficient to identify FDA-approved biomarker indications in a cost-effective manner.
Patients and methods
We used machine learning models of fragmentation patterns at the first coding exon in standard targeted cancer gene cfDNA sequencing panels to distinguish between cancer and non-cancer patients, as well as the specific tumor type and subtype. We assessed this approach in two independent cohorts: a published cohort from GRAIL (breast, lung, and prostate cancers, non-cancer, n = 198) and an institutional cohort from the University of Wisconsin (UW; breast, lung, prostate, bladder cancers, n = 320). Each cohort was split 70%/30% into training and validation sets.
Results
In the UW cohort, training cross-validated accuracy was 82.1%, and accuracy in the independent validation cohort was 86.6% despite a median ctDNA fraction of only 0.06. In the GRAIL cohort, to assess how this approach performs in very low ctDNA fractions, training and independent validation were split based on ctDNA fraction. Training cross-validated accuracy was 80.6%, and accuracy in the independent validation cohort was 76.3%. In the validation cohort where the ctDNA fractions were all <0.05 and as low as 0.0003, the cancer versus non-cancer area under the curve was 0.99.
Conclusions
To our knowledge, this is the first study to demonstrate that sequencing from targeted cfDNA panels can be utilized to analyze fragmentation patterns to classify cancer types, dramatically expanding the potential capabilities of existing clinically used panels at minimal additional cost.