Cited 9 times since 2023 (4.5 per year) source: EuropePMC Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, Volume 32, Issue 11, 29 5 2023, Pages 107388 Non-coding RNAs versus protein biomarkers to diagnose and differentiate acute stroke: Systematic review and meta-analysis. Florijn BW, Leontien van der Bent M, Nguyen TMT, Quax PHA, Wermer MJH, Yaël Nossent A, Kruyt ND
Background
Stroke diagnosis is dependent on lengthy clinical and neuroimaging assessments, while rapid treatment initiation improves clinical outcome. Currently, more sensitive biomarker assays of both non-coding RNA- and protein biomarkers have improved their detectability, which could accelerate stroke diagnosis. This systematic review and meta-analysis compares non-coding RNA- with protein biomarkers for their potential to diagnose and differentiate acute stroke (subtypes) in (pre-)hospital settings.
Methods
We performed a systematic review and meta-analysis of studies evaluating diagnostic performance of non-coding RNA- and protein biomarkers to differentiate acute ischemic and hemorrhagic stroke, stroke mimics, and (healthy) controls. Quality appraisal of individual studies was assessed using the QUADAS-2 tool while the meta-analysis was performed with the sROC approach and by assessing pooled sensitivity and specificity, diagnostic odds ratios, positive- and negative likelihood ratios, and the Youden Index.
Summary of review
112 studies were included in the systematic review and 42 studies in the meta-analysis containing 11627 patients with ischemic strokes, 2110 patients with hemorrhagic strokes, 1393 patients with a stroke mimic, and 5548 healthy controls. Proteins (IL-6 and S100 calcium-binding protein B (S100B)) and microRNAs (miR-30a) have similar performance in ischemic stroke diagnosis. To differentiate between ischemic- or hemorrhagic strokes, glial fibrillary acidic protein (GFAP) levels and autoantibodies to the NR2 peptide (NR2aAb, a cleavage product of NMDA neuroreceptors) were best performing whereas no investigated protein or non-coding RNA biomarkers differentiated stroke from stroke mimics with high diagnostic potential.
Conclusions
Despite sampling time differences, circulating microRNAs (< 24 h) and proteins (< 4,5 h) perform equally well in ischemic stroke diagnosis. GFAP differentiates stroke subtypes, while a biomarker panel of GFAP and UCH-L1 improved the sensitivity and specificity of UCH-L1 alone to differentiate stroke.