Cited 1 times since 2024 (1 per year) source: EuropePMC Journal of cardiovascular computed tomography, Volume 18, Issue 3, 19 3 2024, Pages 274-280 Prediction of the development of new coronary atherosclerotic plaques with radiomics. Lee SE, Hong Y, Hong J, Jung J, Sung JM, Andreini D, Al-Mallah MH, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Chun EJ, Conte E, Gottlieb I, Hadamitzky M, Kim YJ, Lee BK, Leipsic JA, Maffei E, Marques H, Gonçalves PA, Pontone G, Shin S, Stone PH, Samady H, Virmani R, Narula J, Shaw LJ, Bax JJ, Lin FY, Min JK, Chang HJ
Background
Radiomics is expected to identify imaging features beyond the human eye. We investigated whether radiomics can identify coronary segments that will develop new atherosclerotic plaques on coronary computed tomography angiography (CCTA).
Methods
From a prospective multinational registry of patients with serial CCTA studies at ≥ 2-year intervals, segments without identifiable coronary plaque at baseline were selected and radiomic features were extracted. Cox models using clinical risk factors (Model 1), radiomic features (Model 2) and both clinical risk factors and radiomic features (Model 3) were constructed to predict the development of a coronary plaque, defined as total PV ≥ 1 mm3, at follow-up CCTA in each segment.
Results
In total, 9583 normal coronary segments were identified from 1162 patients (60.3 ± 9.2 years, 55.7% male) and divided 8:2 into training and test sets. At follow-up CCTA, 9.8% of the segments developed new coronary plaque. The predictive power of Models 1 and 2 was not different in both the training and test sets (C-index [95% confidence interval (CI)] of Model 1 vs. Model 2: 0.701 [0.690-0.712] vs. 0.699 [0.0.688-0.710] and 0.696 [0.671-0.725] vs. 0.0.691 [0.667-0.715], respectively, all p > 0.05). The addition of radiomic features to clinical risk factors improved the predictive power of the Cox model in both the training and test sets (C-index [95% CI] of Model 3: 0.772 [0.762-0.781] and 0.767 [0.751-0.787], respectively, all p < 00.0001 compared to Models 1 and 2).
Conclusion
Radiomic features can improve the identification of segments that would develop new coronary atherosclerotic plaque.
Clinical trial registration
ClinicalTrials.gov NCT0280341.