Journal of lipid research, Volume 66, Issue 3, 3 1 2025, Pages 100753 Efficacy of a novel PCSK9 inhibitory peptide alone and with evinacumab in a mouse model of atherosclerosis. Inia JA, van Nieuwkoop-van Straalen A, Jukema JW, Rolin B, Staarup EM, Mogensen CK, Princen HMG, van den Hoek AM
Atherosclerosis is the major cause of cardiovascular disease. This study evaluated the effect of lipid lowering using a novel peptide inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) and a monoclonal antibody against angiopoietin-like 3 (evinacumab), either alone or in combination in APOE∗3-Leiden.CETP mice fed a Western diet. Effects on body weight, plasma lipids, atherosclerotic lesion size, severity, composition, and morphology were assessed. Treatment with PCSK9 inhibitory peptide significantly decreased both cholesterol and triglycerides (-69% and -68%, respectively). Similar reductions were seen in evinacumab-treated mice (-44% and -55%, respectively). The combination of evinacumab and PCSK9 inhibitory peptide lowered these levels to a larger extent than evinacumab alone (cholesterol: -74%; triglycerides: -81%). Reductions occurred in non-HDL-C without changes in HDL-C. Atherosclerotic lesion size was significantly reduced in all treatment groups compared to vehicle controls (evinacumab: -72%; PCSK9 inhibitory peptide: -97%; combination: -98%). Similarly, all interventions improved atherosclerotic lesion severity, with more undiseased segments and fewer severe lesions. Evaluation of the composition of severe atherosclerotic plaques revealed significant improvement in lesion stability in mice treated with both evinacumab and PCSK9 inhibitory peptide, attributable to decreased macrophage content and increased collagen content. Additionally, evaluation of lipid concentrations in cynomolgus monkeys revealed the beneficial effects of the PCSK9 inhibitory peptide on total cholesterol and LDL-C levels. Treatment with a novel PCSK9 inhibitory peptide alone or with evinacumab shows great potential to reduce and stabilize atherosclerotic lesions.